Fissure Encyclopedia Article

Fissure

The following sections of this BookRags Literature Study Guide is offprint from Gale's For Students Series: Presenting Analysis, Context, and Criticism on Commonly Studied Works: Introduction, Author Biography, Plot Summary, Characters, Themes, Style, Historical Context, Critical Overview, Criticism and Critical Essays, Media Adaptations, Topics for Further Study, Compare & Contrast, What Do I Read Next?, For Further Study, and Sources.

(c)1998-2002; (c)2002 by Gale. Gale is an imprint of The Gale Group, Inc., a division of Thomson Learning, Inc. Gale and Design and Thomson Learning are trademarks used herein under license.

The following sections, if they exist, are offprint from Beacham's Encyclopedia of Popular Fiction: "Social Concerns", "Thematic Overview", "Techniques", "Literary Precedents", "Key Questions", "Related Titles", "Adaptations", "Related Web Sites". (c)1994-2005, by Walton Beacham.

The following sections, if they exist, are offprint from Beacham's Guide to Literature for Young Adults: "About the Author", "Overview", "Setting", "Literary Qualities", "Social Sensitivity", "Topics for Discussion", "Ideas for Reports and Papers". (c)1994-2005, by Walton Beacham.

All other sections in this Literature Study Guide are owned and copyrighted by BookRags, Inc.

Fissure

Any extensive crack in the earth is a fissure. When a small or medium-size fissure is filled with magma it is termed a dike. A large, magma-filled fissure that breaches the surface may erupt along its whole length or manifest as a chain of craters, each connected by a short central pipe to the magma-filled fissure below.

Small fissures are a common feature of volcanoes built by central activity (i.e., fed by a single pipelike conduit at their core). Indeed, most central volcanoes begin as eruptions from fissures and later localize to a single, central vent. High pressure in the central pipe may cause cracks in the surrounding cone or shield; if such a fissure breaches the surface, it may become a secondary point of eruption or even take over for the central crater. A fissure of this type typically appears at the surface as a hairline crack that gradually increases in width. Sulfurous fumes and steam emerge first, followed by small, glowing crumbs of red-hot rock. Later, viscous lava begins to bulge and ooze from the fissure, followed by increasingly fluid and voluminous flow. Not all fissures open so gradually; where magma meets subsurface water, steam explosions can open or widen a fissure suddenly.

Small fissures around central volcanoes are a parasitic phenomenon. In contrast, eruptions along large, independent fissures are a distinct type of volcanism. Such eruptions may be pyroclastic (i.e., explosive eruptions of solid fragments), such as that which covered the Valley of Ten Thousand Smokes in Alaska with some 1.7 mi3 (7 km3) of ash and pumice in 1912, or those which covered Nevada and western Utah with 12,000 mi3 (50,000 km3) of welded tuff in the early Oligocene and late Pliocene Epochs. Fissure eruptions may also be gradual, such as the Great Tolbachik Fissure Eruption on the Kamchatka Peninsula in Russia, that in 1975 vented lava from a fissure 19 mi (30 km) long for 450 days and covered more than 15 mi2 (40 km2) with lava flows.

Iceland is widening by about .5–1 in (1–2 cm) per year because it sits astride the Mid-Atlantic Ridge, and so is infiltrated by stretching-induced fissures that yield numerous fissure eruptions. Although not all independent fissure eruptions are on the largest scale, the most voluminous volcanic eruptions have all been fissure eruptions.

See Also

Crater, Volcanic; Pipe, Volcanic; Sea-Floor Spreading; Volcanic Eruptions; Volcanic Vent