|
This section contains 1,602 words (approx. 6 pages at 300 words per page) |
|
Overview
A number of important advances in understanding the curvature of surfaces in three- and higher dimensional space have occurred in the decades following 1950. A method of cutting up surfaces, called surgery on manifolds, enabled the resolution of some long-standing conjectures about surfaces in higher dimensional spaces. In ordinary three-dimensional space, computer-assisted investigators discovered families of new minimal area surfaces. René Thom's catastrophe theory claimed to provide a means of explaining abrupt changes in the stable behaviors of complex systems, but met a varied reception among scientists and mathematicians.
Background
Topology is concerned with the behavior of geometrical forms as they are stretched or squeezed or twisted. To a topologist a billiard ball and a soup bowl are related because they can be gradually transformed into each other without separating any points that were originally very close to each other...
|
This section contains 1,602 words (approx. 6 pages at 300 words per page) |
|

