More rarely yet are instances met with of languages which make use of subtraction almost as freely as addition, in the composition of numerals. Within the past few years such an instance has been noticed in the case of the Bellacoola language of British Columbia. In their numeral scale 15, “one foot,” is followed by 16, “one man less 4”; 17, “one man less 3”; 18, “one man less 2”; 19, “one man less 1”; and 20, one man. Twenty-five is “one man and one hand”; 26, “one man and two hands less 4”; 36, “two men less 4”; and so on. This method of formation prevails throughout the entire numeral scale.[63]
One of the best known and most interesting examples of subtraction as a well-defined principle of formation is found in the Maya scale. Up to 40 no special peculiarity appears; but as the count progresses beyond that point we find a succession of numerals which one is almost tempted to call 60 — 19, 60 — 18, 60 — 17, etc. Literally translated the meanings seem to be 1 to 60, 2 to 60, 3 to 60, etc. The point of reference is 60, and the thought underlying the words may probably be expressed by the paraphrases, “1 on the third score, 2 on the third score, 3 on the third score,” etc. Similarly, 61 is 1 on the fourth score, 81 is one on the fifth score, 381 is 1 on the nineteenth score, and so on to 400. At 441 the same formation reappears; and it continues to characterize the system in a regular and consistent manner, no matter how far it is extended.[64]


