** A Homemade Water Motor [66] By Mrs. Paul S. Winter
In these days of modern improvements, most houses are equipped with a washing machine, and the question that arises in the mind of the householder is how to furnish the power to run it economically. I referred this question to my husband, with the result that he built a motor which proved so very satisfactory that I prevailed upon him to give the readers of Amateur Mechanics a description of it, hoping it may solve the same question for them.
A motor of this type will develop about 1/2 hp. with a water pressure of 70 lb. The power developed is correspondingly increased or decreased as the pressure exceeds or falls below this. In the latter case the power may be increased by using a smaller pulley. Fig. 1 is the motor with one side removed, showing the paddle-wheel in position; Fig. 2 is an end view; Fig. 3 shows one of the paddles, and Fig. 4 shows the method of shaping the paddles. To make the frame, several lengths of scantling 3 in. wide by 1 in. thick (preferably of hard wood) are required. Cut two of them 4 ft. long, to form the main supports of the frame, AA, Fig. 1 ; another, 2 ft. 6 in. long, for the top, B, Fig. 1; another, 26 in. long, to form the slanting part, C, Fig. 1; and another, D, approximately 1 ft., according to the slant given C. After nailing these together as shown in the illustration, nail two short strips on each side of the outlet, as at E, to keep the frame from spreading.
Cut two pieces 30 in. long. Lay these on the sides of the frame with their center lines along the line FF, which is 15 in. from the outside top of the frame. They are shown in Fig. 2 at GG. Do not fasten these boards now, but mark their position on the frame. Two short boards 1 in. wide
[Illustration: Detail of Homemade Waterwheel]
by 1 in. thick (HH, Fig. 2) and another 1 in. by 1-1/2 in. (I, Fig. 2) form a substantial base.
Cut the wheel from sheet iron 1/16 in. thick, 24 in. in diameter. This can be done roughly with hammer and chisel and then smoothed up on an emery wheel, after which cut 24 radial slots 3/4 in. deep on its circumference by means of a hacksaw. On each side of the wheel at the center fasten a rectangular piece of 1/4-in. iron 3 by 4 in. and secure it to the wheel by means of four rivets; after which drill a 5/8 in. hole through the exact center of the wheel.
Cut 24 pieces of 1/32-in. iron, 1-1/2 by 2-1/2 in. These are the paddles. Shape them by placing one end over a section of 1-in. pipe, and hammer bowl shaped with the peen of a hammer, as shown in Fig. 4. Then cut them into the shape shown in Fig. 3 and bend the tapered end in along the lines JJ, after which place them in the slots of the wheel and bend the sides over to clamp the wheel. Drill 1/8-in. holes through the wheel and sides of the paddles and rivet paddles in place. Next secure a 5/8-in. steel shaft 12 in. long to the wheel about 8 in. from one end by means of a key. This is done by cutting a groove in the shaft and a corresponding groove in the wheel and fitting in a piece of metal in order to secure the wheel from turning independently of the shaft. Procure two collars or round pieces of brass (KK, Fig. 2) with a 5/8-in. hole through them, and fasten these to the shaft by means of set screws to prevent it from moving lengthwise.


