Forgot your password?  

Resources for students & teachers

This eBook from the Gutenberg Project consists of approximately 310 pages of information about Pascal's Penses.

THOUGHTS ON MIND AND ON STYLE

1

The difference between the mathematical and the intuitive mind.[1]—­In the one the principles are palpable, but removed from ordinary use; so that for want of habit it is difficult to turn one’s mind in that direction:  but if one turns it thither ever so little, one sees the principles fully, and one must have a quite inaccurate mind who reasons wrongly from principles so plain that it is almost impossible they should escape notice.

But in the intuitive mind the principles are found in common use, and are before the eyes of everybody.  One has only to look, and no effort is necessary; it is only a question of good eyesight, but it must be good, for the principles are so subtle and so numerous, that it is almost impossible but that some escape notice.  Now the omission of one principle leads to error; thus one must have very clear sight to see all the principles, and in the next place an accurate mind not to draw false deductions from known principles.

All mathematicians would then be intuitive if they had clear sight, for they do not reason incorrectly from principles known to them; and intuitive minds would be mathematical if they could turn their eyes to the principles of mathematics to which they are unused.

The reason, therefore, that some intuitive minds are not mathematical is that they cannot at all turn their attention to the principles of mathematics.  But the reason that mathematicians are not intuitive is that they do not see what is before them, and that, accustomed to the exact and plain principles of mathematics, and not reasoning till they have well inspected and arranged their principles, they are lost in matters of intuition where the principles do not allow of such arrangement.  They are scarcely seen; they are felt rather than seen; there is the greatest difficulty in making them felt by those who do not of themselves perceive them.  These principles are so fine and so numerous that a very delicate and very clear sense is needed to perceive them, and to judge rightly and justly when they are perceived, without for the most part being able to demonstrate them in order as in mathematics; because the principles are not known to us in the same way, and because it would be an endless matter to undertake it.  We must see the matter at once, at one glance, and not by a process of reasoning, at least to a certain degree.  And thus it is rare that mathematicians are intuitive, and that men of intuition are mathematicians, because mathematicians wish to treat matters of intuition mathematically, and make themselves ridiculous, wishing to begin with definitions and then with axioms, which is not the way to proceed in this kind of reasoning.  Not that the mind does not do so, but it does it tacitly, naturally, and without technical rules; for the expression of it is beyond all men, and only a few can feel it.

Follow Us on Facebook