Phosphates Encyclopedia Article

Phosphates

The following sections of this BookRags Literature Study Guide is offprint from Gale's For Students Series: Presenting Analysis, Context, and Criticism on Commonly Studied Works: Introduction, Author Biography, Plot Summary, Characters, Themes, Style, Historical Context, Critical Overview, Criticism and Critical Essays, Media Adaptations, Topics for Further Study, Compare & Contrast, What Do I Read Next?, For Further Study, and Sources.

(c)1998-2002; (c)2002 by Gale. Gale is an imprint of The Gale Group, Inc., a division of Thomson Learning, Inc. Gale and Design and Thomson Learning are trademarks used herein under license.

The following sections, if they exist, are offprint from Beacham's Encyclopedia of Popular Fiction: "Social Concerns", "Thematic Overview", "Techniques", "Literary Precedents", "Key Questions", "Related Titles", "Adaptations", "Related Web Sites". (c)1994-2005, by Walton Beacham.

The following sections, if they exist, are offprint from Beacham's Guide to Literature for Young Adults: "About the Author", "Overview", "Setting", "Literary Qualities", "Social Sensitivity", "Topics for Discussion", "Ideas for Reports and Papers". (c)1994-2005, by Walton Beacham.

All other sections in this Literature Study Guide are owned and copyrighted by BookRags, Inc.

Phosphates

Pure phosphorus is rare in nature. It usually combines with oxygen to form phosphate ions or groups (PO 3- 4 ). Phosphates are considered organic when phosphate groups attach to carbon atoms or inorganic when phosphate ions associate with minerals such as calcium. Organic phosphates provide the energy for most chemical reactions in living cells.

The weathering of rocks releases inorganic phosphorus into the soil, and plants take this up and convert it to organic phosphate in their tissue. Humans and animals eat the plants, and when they die, phosphorus is returned to the soil by the action of bacteria and then again taken up by plants. This is the so-called phosphorus cycle.

Phosphates are normally a limiting factor for aquatic plant growth. When large amounts of phosphorus enter water, for instance, from farm runoff containing fertilizer, plants can grow out of control. Concentrations as low as 0.01 milligrams per liter (mg/L) can greatly impact a stream. This overfeeding is called eutrophication and may cause an algae bloom. The algae eventually die and sink to the bottom. Bacteria feeding on the algae remove oxygen from the water for respiration. As oxygen levels become lower, animals that need high oxygen levels such as fish will die. This is especially a problem at night when no photosynthesis occurs to replenish the oxygen.

If organic oxygen levels drop sufficiently, aerobic organisms can no longer survive and anaerobic bacteria take over. The end products of anaerobic respiration may smell like rotten eggs, fishy, or wormy.

Internet Resource

University of Maryland. "Impact of Phosphorus on Aquatic Life." Available from http://www.agnr.umd.edu/users.