Oxygen Demand, Biochemical Encyclopedia Article

Oxygen Demand, Biochemical

The following sections of this BookRags Literature Study Guide is offprint from Gale's For Students Series: Presenting Analysis, Context, and Criticism on Commonly Studied Works: Introduction, Author Biography, Plot Summary, Characters, Themes, Style, Historical Context, Critical Overview, Criticism and Critical Essays, Media Adaptations, Topics for Further Study, Compare & Contrast, What Do I Read Next?, For Further Study, and Sources.

(c)1998-2002; (c)2002 by Gale. Gale is an imprint of The Gale Group, Inc., a division of Thomson Learning, Inc. Gale and Design and Thomson Learning are trademarks used herein under license.

The following sections, if they exist, are offprint from Beacham's Encyclopedia of Popular Fiction: "Social Concerns", "Thematic Overview", "Techniques", "Literary Precedents", "Key Questions", "Related Titles", "Adaptations", "Related Web Sites". (c)1994-2005, by Walton Beacham.

The following sections, if they exist, are offprint from Beacham's Guide to Literature for Young Adults: "About the Author", "Overview", "Setting", "Literary Qualities", "Social Sensitivity", "Topics for Discussion", "Ideas for Reports and Papers". (c)1994-2005, by Walton Beacham.

All other sections in this Literature Study Guide are owned and copyrighted by BookRags, Inc.

Oxygen Demand, Biochemical

Biochemical oxygen demand (BOD) is a measure of how much organic pollution is in water. The BOD test measures the amount of dissolved oxygen in water that is used up due to the breakdown of organic pollutants, such as sewage, in a certain number of days. Raw sewage has a BOD of forty to 150 milligrams per liter, whereas drinking water has a BOD of less than 0.5 milligrams per liter.

Engineers and scientists measure the BOD of a lake or river to see how healthy the water is. The lower the BOD, the healthier the water. Water needs to have oxygen in it to support aquatic life such as fish and plants. Oxygen in the water is replenished from the atmosphere through aeration, but if it is used up faster than it is replenished, the water becomes anaerobic (or hypoxic)—existing in the deficiency or absence of free oxygen. Anaerobic water cannot support life.

Bibliography

Peavey, Howard S.; Rowe, Donald R.; and Tchobanoglous, George. (1985). Environmental Engineering. New York: McGraw-Hill.