Neutron Activation Analysis Encyclopedia Article

Neutron Activation Analysis

The following sections of this BookRags Literature Study Guide is offprint from Gale's For Students Series: Presenting Analysis, Context, and Criticism on Commonly Studied Works: Introduction, Author Biography, Plot Summary, Characters, Themes, Style, Historical Context, Critical Overview, Criticism and Critical Essays, Media Adaptations, Topics for Further Study, Compare & Contrast, What Do I Read Next?, For Further Study, and Sources.

(c)1998-2002; (c)2002 by Gale. Gale is an imprint of The Gale Group, Inc., a division of Thomson Learning, Inc. Gale and Design and Thomson Learning are trademarks used herein under license.

The following sections, if they exist, are offprint from Beacham's Encyclopedia of Popular Fiction: "Social Concerns", "Thematic Overview", "Techniques", "Literary Precedents", "Key Questions", "Related Titles", "Adaptations", "Related Web Sites". (c)1994-2005, by Walton Beacham.

The following sections, if they exist, are offprint from Beacham's Guide to Literature for Young Adults: "About the Author", "Overview", "Setting", "Literary Qualities", "Social Sensitivity", "Topics for Discussion", "Ideas for Reports and Papers". (c)1994-2005, by Walton Beacham.

All other sections in this Literature Study Guide are owned and copyrighted by BookRags, Inc.

Neutron Activation Analysis

Neutron activation analysis is an analytical technique for determining the elements present in a material as well as the amount of each element in the sample. The technique is based on a well-known reaction from nuclear chemistry. When an element is bombarded with neutrons, some of the atoms of that element may capture neutrons and incorporate them into their nuclei. Those atoms that do so have the same atomic number (that is, are the same element) as the original target element, but have an atomic mass of one higher. Bombarding atoms of sodium-23 with neutrons, for example, converts them to atoms of sodium-24.

In most cases, the heavier atoms formed in this reaction are radioactive. They usually decay with the emission of a beta particle and a gamma ray. The energy associated with these decay schemes is characteristic of the radioactive isotope in question. For example, a gamma ray released in the decay of sodium-24 has an energy of 2.75 or 1.37 MeV.

In practice, nuclear activation analysis is carried out by placing thesample to be examined in a nuclear reactor. The neutrons available in the reactor bring about the n/c (neutron/gamma ray) reactions described above. The radioactive sample is then removed from the reactor and examined with a gamma ray spectrometer. This device measures the type and intensity of radiation released by the sample. These data can then be compared to standard tables to determine which elements and the amounts of each are present in the sample.

Neutron activation analysis is valuable as a non-destructive form of analysis. It can be used without fear of damaging or destroying the material being tested. It is also a very precise form of analysis, permitting the detection of very small quantities of an element. One application that illustrates these strengths is in the analysis of archaeological materials that are too fragile or too valuable to expose to other analytical techniques.