Magnetic Separation Encyclopedia Article

Magnetic Separation

The following sections of this BookRags Literature Study Guide is offprint from Gale's For Students Series: Presenting Analysis, Context, and Criticism on Commonly Studied Works: Introduction, Author Biography, Plot Summary, Characters, Themes, Style, Historical Context, Critical Overview, Criticism and Critical Essays, Media Adaptations, Topics for Further Study, Compare & Contrast, What Do I Read Next?, For Further Study, and Sources.

(c)1998-2002; (c)2002 by Gale. Gale is an imprint of The Gale Group, Inc., a division of Thomson Learning, Inc. Gale and Design and Thomson Learning are trademarks used herein under license.

The following sections, if they exist, are offprint from Beacham's Encyclopedia of Popular Fiction: "Social Concerns", "Thematic Overview", "Techniques", "Literary Precedents", "Key Questions", "Related Titles", "Adaptations", "Related Web Sites". (c)1994-2005, by Walton Beacham.

The following sections, if they exist, are offprint from Beacham's Guide to Literature for Young Adults: "About the Author", "Overview", "Setting", "Literary Qualities", "Social Sensitivity", "Topics for Discussion", "Ideas for Reports and Papers". (c)1994-2005, by Walton Beacham.

All other sections in this Literature Study Guide are owned and copyrighted by BookRags, Inc.

Magnetic Separation

An on-going problem of environmental significance is solid waste disposal. As the land needed to simply throw out solid wastes becomes less available, recycling becomes a greater priority in waste management programs. One step in recycling is the magnetic separation of ferrous (ironcontaining) materials. In a typical recycling process, wastes are first shredded into small pieces and then separated into organic and inorganic fractions. The inorganic fraction is then passed through a magnetic separator where ferrous materials are extracted. These materials can then be purified and reused as scrap iron.

See Also

Iron Minerals; Resource Recovery