Insectivorous Plants eBook

This eBook from the Gutenberg Project consists of approximately 527 pages of information about Insectivorous Plants.

Insectivorous Plants eBook

This eBook from the Gutenberg Project consists of approximately 527 pages of information about Insectivorous Plants.
least in these cases, one of molecular change, transmitted from the glands, [page 45] independently of the absorption of any matter.  So it may possibly be in the case of the carbonate of ammonia.  As, however, the aggregation caused by this salt travels down the tentacles at a quicker rate than when insoluble particles are placed on the glands, it is probable that ammonia in some form is absorbed not only by the glands, but passes down the tentacles.

Having examined a leaf in water, and found the contents of the cells homogeneous, I placed it in a few drops of a solution of one part of the carbonate to 437 of water, and attended to the cells immediately beneath the glands, but did not use a very high power.  No aggregation was visible in 3 m.; but after 15 m. small spheres of protoplasm were formed, more especially beneath the long-headed marginal glands; the process, however, in this case took place with unusual slowness.  In 25 m. conspicuous spherical masses were present in the cells of the pedicels for a length about equal to that of the glands; and in 3 hrs. to that of a third or half of the whole tentacle.

If tentacles with cells containing only very pale pink fluid, and apparently but little protoplasm, are placed in a few drops of a weak solution of one part of the carbonate to 4375 of water (1 gr. to 10 oz.), and the highly transparent cells beneath the glands are carefully observed under a high power, these may be seen first to become slightly cloudy from the formation of numberless, only just perceptible, granules, which rapidly grow larger either from coalescence or from attracting more protoplasm from the surrounding fluid.  On one occasion I chose a singularly pale leaf, and gave it, whilst under the microscope, a single drop of a stronger solution of one part to 437 of water; in this case the contents of the cells did not become cloudy, but after 10 m. minute irregular granules of protoplasm could be detected, which soon increased into irregular masses and globules of a greenish or very pale purple tint; but these never formed perfect spheres, though incessantly changing their shapes and positions.

With moderately red leaves the first effect of a solution of the carbonate generally is the formation of two or three, or of several, extremely minute purple spheres which rapidly increase in size.  To give an idea of the rate at which such spheres increase in size, I may mention that a rather pale purple leaf placed under a slip of glass was given a drop of a solution of one part to 292 of water, and in 13 m. a few minute spheres of protoplasm were formed; one of these, after 2 hrs. 30 m., was about two-thirds of the diameter of the cell.  After 4 hrs. 25 m. [page 46] it nearly equalled the cell in diameter; and a second sphere about half as large as the first, together with a few other minute ones, were formed.  After 6 hrs. the fluid in which these spheres floated was almost colourless.  After 8 hrs. 35 m. (always reckoning from the time when the solution was first added) four new minute spheres had appeared.  Next morning, after 22 hrs., there were, besides the two large spheres, seven smaller ones, floating in absolutely colourless fluid, in which some flocculent greenish matter was suspended.

Copyrights
Project Gutenberg
Insectivorous Plants from Project Gutenberg. Public domain.