Some Mooted Questions in Reinforced Concrete Design eBook

This eBook from the Gutenberg Project consists of approximately 181 pages of information about Some Mooted Questions in Reinforced Concrete Design.

Some Mooted Questions in Reinforced Concrete Design eBook

This eBook from the Gutenberg Project consists of approximately 181 pages of information about Some Mooted Questions in Reinforced Concrete Design.

The writer would place the neutral axis from 0.42 to 0.45 of the effective depth of the beam from the compression side rather than at the center, as Mr. Godfrey suggests.  This higher position of the neutral axis is the one more generally shown by tests of beams.  It gives the formula M = 0.86 d As f, or M = 0.85 d As f, which the writer believes is more accurate than M = 5/6 d As f, or 0.83-1/3 d As f, which would result if the neutral axis were taken at the center of the beam.

d = depth of the beam from the compression side to the center
of the steel;
As = the area of the steel;
and f = the allowable stress per square inch in the steel.

The difference, however, is very slight, the results from the two formulas being proportional to the two factors, 83-1/3 and 85 or 86.  This formula gives the area of steel required for the moment.  The percentage of steel to be used can easily be obtained from the allowable stresses in the concrete and the steel, and the dimensions of the beam can be obtained in the simplest manner.  This formula is used with great success by one of the largest firms manufacturing reinforcing materials and designing concrete structures.  It is well-known to the Profession, and the reason for using any other method, involving the Greek alphabet and many assumptions, is unknown to the writer.  The only thing to assume—­if it can be called assuming when there are so many tests to locate it—­is the position of the neutral axis.  A slight difference in this assumption affects the resulting design very little, and is inappreciable, from a practical point of view.  It can be safely said that the neutral axis is at, or a little above, the center of the beam.

Further, it would seem that the criticism to the effect that the initial stress in the concrete is neglected is devoid of weight.  As far as the designer is concerned, the initial stress is allowed for.  The values for the stresses used in design are obtained from tests on blocks of concrete which have gone through the process of setting.  Whatever initial stress exists in concrete due to this process of setting exists also in these blocks when they are tested.  The value of the breaking load on concrete given by any outside measuring device used in these tests, is the value of that stress over and above this initial stress.  It is this value with which we work.  It would seem that, if the initial stress is neglected in arriving at a safe working load, it would be safe to neglect it in the formula for design.

EDWIN THACHER, M. AM.  SOC.  C. E. (by letter).—­The writer will discuss this paper under the several “points” mentioned by the author.

First Point.—­At the point where the first rod is bent up, the stress in this rod runs out.  The other rods are sufficient to take the horizontal stress, and the bent-up portion provides only for the vertical and diagonal shearing stresses in the concrete.

Copyrights
Project Gutenberg
Some Mooted Questions in Reinforced Concrete Design from Project Gutenberg. Public domain.