---+-----------+
SECOND METHOD. +---------+--------------------------+----------------------
---+-----------+ |Total No.| L MOVEMENT. | U MOVEMENT. | | | of +-------------+------------+----------+--------------+ Total No. | |Counters.| No. of | No. of | No. of | No. of | of Moves. | | | Counters. | Moves. | Counters.| Moves. | | +---------+-------------+------------+----------+-----------
---+-----------+ | 4n | n and n |2n squared+3n-4 | 2n | 2(n-1) squared+5n-2 |4(n squared+n-1) | | 4n-2 | n-1 " n-1 |2(n-1) squared+3n-7| 2n | 2(n-1) squared+5n-2 |4n squared-5 | | 4n+1 | n " n |2n squared+3n-4 | 2n+1 | 2n squared+5n-2 |2(2n squared+4n-3)| | 4n-1 | n " n |2n squared+3n-4 | 2n-1 | 2(n-1) squared+5n-7 |4n squared+4n-9 | +---------+-------------+------------+----------+-----------
---+-----------+
More generally we may say that with m counters, where m is even and greater than 4, we require (m squared + 4m — 16)/4 moves; and where m is odd and greater than 3, (m squared + 6m — 31)/4 moves. I have thus shown the reader how to find the minimum number of moves for any case, and the character and direction of the moves. I will leave him to discover for himself how the actual order of moves is to be determined. This is a hard nut, and requires careful adjustment of the L and the U movements, so that they may be mutually accommodating.
216.—THE EDUCATED FROGS.
The following leaps solve the puzzle in ten moves: 2 to 1, 5 to 2, 3 to 5, 6 to 3, 7 to 6, 4 to 7, 1 to 4, 3 to 1, 6 to 3, 7 to 6.
217.—THE TWICKENHAM PUZZLE.
Play the counters in the following order: K C E K W T C E H M K W T A N C E H M I K C E H M T, and there you are, at Twickenham. The position itself will always determine whether you are to make a leap or a simple move.
218.—THE VICTORIA CROSS PUZZLE.
In solving this puzzle there were two things to be achieved: first, so to manipulate the counters that the word VICTORIA should read round the cross in the same direction, only with the V on one of the dark arms; and secondly, to perform the feat in the fewest possible moves. Now, as a matter of fact, it would be impossible to perform the first part in any way whatever if all the letters of the word were different; but as there are two I’s, it can be done by making these letters change places—that is, the first I changes from the 2nd place to the 7th, and the second I from the 7th place to the 2nd. But the point I referred to, when introducing the puzzle, as a little remarkable is this: that a solution in twenty-two moves is obtainable by moving the letters in the order of the following words: “A VICTOR! A VICTOR! A VICTOR I!”


