1. moyyi,
2. mbiri,
3. tato,
4. ena,
5. tano,
6. seta,
7. saba,
8. nani,
9. kenda,
10. kumi,
11. kumi na moyyi,
12. kumi na mbiri,
13. kumi na tato,
etc.
The words for 11, 12, and 13, are seen at a glance to signify ten-and-one, ten-and-two, ten-and-three, and the count proceeds, as might be inferred, in a similar manner as far as the number system extends. Our English combinations are a little closer than these, and the combinations found in certain other languages are, in turn, closer than those of the English; as witness the once, 11, doce, 12, trece, 13, etc., of Spanish. But the process is essentially the same, and the law may be accepted as practically invariable, that all numerals greater than the base of a system are expressed by compound words, except such as are necessary to establish some new order of unit, as hundred or thousand.
In the scale just given, it will be noticed that the larger number precedes the smaller, giving 10 + 1, 10 + 2, etc., instead of 1 + 10, 2 + 10, etc. This seems entirely natural, and hardly calls for any comment whatever. But we have only to consider the formation of our English “teens” to see that our own method is, at its inception, just the reverse of this. Thirteen, 14, and the remaining numerals up to 19 are formed by prefixing the smaller number to the base; and it is only when we pass 20 that we return to the more direct and obvious method


