Scientific American Supplement, No. 561, October 2, 1886 eBook

This eBook from the Gutenberg Project consists of approximately 141 pages of information about Scientific American Supplement, No. 561, October 2, 1886.

Scientific American Supplement, No. 561, October 2, 1886 eBook

This eBook from the Gutenberg Project consists of approximately 141 pages of information about Scientific American Supplement, No. 561, October 2, 1886.

If the image of an object as seen in the microscope appears to be unusually distorted and indistinct toward the edge of the field, and satisfactory definition is limited to a small portion of the center, the cause is often attributed to the spherical aberration of the objective, while really this phenomenon has nothing to do with that optical defect of the objective, if any exists, but is caused by a lack of optical symmetry.  If a perfectly symmetrical microscope objective could be constructed, then, with any good eye-piece, it would make no difference to the definition of the object were it placed either in the center or at the edge of the field, even if the objective had considerable spherical aberration.  But, unfortunately, our most symmetrical objectives, the low powers, leave much to be desired in this respect, while our wide angle, high powers are very far from symmetrical perfection.

There are two causes of this defect in the latter objectives, one being the extreme wideness of their angular apertures, and the other the great difference in the distances of the object and the image from the optical center of the objectives.

Another mistake is often made in regard to the cause of certain prismatic colors that are sometimes, in a striking degree, produced by otherwise good objectives.  According to the nature of these colors, whether yellow or blue, green or indigo, they are generally regarded as evidences of either chromatic over or under correction of the objective.  Of course the presence of either of these defects is certainly and correctly indicated by the appearance of one or the other of the colors, under certain circumstances; but the simple visibility of prismatic color is by no means a reliable indication of over or under correction of color, and, indeed, to the honor of our opticians, it may be stated that very few objectives are made that cannot justly be called achromatic in the general sense of the term.  By far the most common causes of prismatic color, in otherwise carefully constructed objectives, are the so-called chromatic aberrations of second or higher order.  Every achromatic lens which is, as it should be, at its best at about two-thirds of its aperture, is inside of this ring or zone, toward the center slightly under and outside, toward the edge, slightly over corrected.  This defect is the greater, the less the difference of the dispersive powers of the two glasses used in the construction of the lens, for a given proportion of their refractive indexes, and therefore the degree of visibility of the colors of the aberrations of the second order depends greatly on the nature of the glass employed in the construction of the lens.

This defect may be corrected by a suitable combination of two or more lenses, though not without again having similarly, as in the correction of the first color, some faint remnants of color, the aberrations of third or still higher order.  But even the correction of the third or still higher order may, if the angular aperture is very wide, leave quite visible and disturbing remnants of color.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 561, October 2, 1886 from Project Gutenberg. Public domain.