The doctrine of the conservation of energy which I have endeavored to illustrate is thus defined by the late Clerk Maxwell:
’The total energy of any body or system of bodies is a quantity which can neither be increased nor diminished by any mutual action of such bodies, though it may be transformed into any one of the forms of which energy is susceptible.’ It follows that energy, like matter, is indestructible and ingenerable in nature. The phenomenal world, so far as it is material, expresses the evolution and involution of energy, its passage from the kinetic to the potential condition and back again. Wherever motion of matter takes place, that motion is effected at the expense of part of the total store of energy.
Hence, as the phenomena exhibited by living beings, in so far as they are material, are all molar or molecular motions, these are included under the general law. A living body is a machine by which energy is transformed in the same sense as a steam-engine is so, and all its movements, molar and molecular, are to be accounted for by the energy which is supplied to it. The phenomena of consciousness which arise, along with certain transformations of energy, cannot be interpolated in the series of these transformations, inasmuch as they are not motions to which the doctrine of the conservation of energy applies. And, for the same reason, they do not necessitate the using up of energy; a sensation has no mass and cannot be conceived to be susceptible of movement. That a particular molecular motion does give rise to a state of consciousness is experimentally certain; but the how and why of the process are just as inexplicable as in the case of the communication of kinetic energy by impact.
When dealing with the doctrine of the ultimate constitution of matter, we found a certain resemblance between the oldest speculations and the newest doctrines of physical philosophers. But there is no such resemblance between the ancient and modern views of motion and its causes, except in so far as the conception of attractive and repulsive forces may be regarded as the modified descendant of the Aristotelian conception of forms. In fact, it is hardly too much to say that the essential and fundamental difference between ancient and modern physical science lies in the ascertainment of the true laws of statics and dynamics in the course of the last three centuries; and in the invention of mathematical methods of dealing with all the consequences of these laws. The ultimate aim of modern physical science is the deduction of the phenomena exhibited by material bodies from physico-mathematical first principles. Whether the human intellect is strong enough to attain the goal set before it may be a question, but thither will it surely strive.
[Sidenote: (3) Evolution.]
The third great scientific event of our time, the rehabilitation of the doctrine of evolution, is part of the same tendency of increasing knowledge to unify itself, which has led to the doctrine of the conservation of energy. And this tendency, again, is mainly a product of the increasing strength conferred by physical investigation on the belief in the universal validity of that orderly relation of facts, which we express by the so-called ‘Laws of Nature.’


