Scientific American Supplement, No. 484, April 11, 1885 eBook

This eBook from the Gutenberg Project consists of approximately 125 pages of information about Scientific American Supplement, No. 484, April 11, 1885.

Scientific American Supplement, No. 484, April 11, 1885 eBook

This eBook from the Gutenberg Project consists of approximately 125 pages of information about Scientific American Supplement, No. 484, April 11, 1885.
the eye while observing the plates, the rings of the convex plate will advance outward, those of the concave inward.  It may be asked by the mechanician, Can this method be used for testing our surface plates?  I answer that I have found the scraped surface of iron bright enough to test by sodium light.  My assistant in the machine work scraped three 8 inch plates that were tested by this method and found to be very excellent, though it must be evident that a single cut of the scraper would change the spot over which it passed so much as to entirely change the appearance there, but I found I could use the test to get the general outline of the surface under process of correction.  These iron plates, I would say, are simply used for preliminary formation of polishers.  I may have something to say on the question of surface plates in the future, as I have made some interesting studies on the subject.  I must now bring this paper to a close, although I had intended including some interesting studies of curved surfaces.  There is, however, matter enough in that subject of itself, especially when we connect it with the idiosyncrasies of the material we have to deal with, a vital part of the subject that I have not touched upon in the present paper.  You may now inquire, How critical is this “color test”?  To answer this I fear I shall trench upon forbidden grounds, but I call to my help the words of one of our best American physicists, and I quote from a letter in which he says by combined calculation and experiment I have found the limiting error for white light to be 1/50000000 of an inch, and for Na or sodium light about fifty times greater, or less than 1/800000 of an inch.  Dr. Alfred Mayer estimated and demonstrated by actual experiment that the smallest black spot on a white ground visible to the naked eye is about 1/800 of an inch at the distance of normal vision, namely, 10 inches, and that a line, which of course has the element of extension, 1/5000 of an inch in thickness could be seen.  In our delicate “color test” we may decrease the diameter of our black spot a thousand times and still its perception is possible by the aid of our monochromatic light, and we may diminish our line ten thousand times, yet find it just perceivable on the border land of our test by white light.  Do not presume I am so foolish as to even think that the human hand, directed by the human brain, can ever work the material at his command to such a high standard of exactness.  No; from the very nature of the material we have to work with, we are forbidden even to hope for such an achievement; and could it be possible that, through some stroke of good fortune, we could attain this high ideal, it would be but for a moment, as from the very nature of our environment it would be but an ignis fatuus.  There is, however, to the earnest mind a delight in having a high model of excellence, for as our model is so will our work approximate; and although we may go on approximating our ideal forever, we can never hope to reach that which has been set for us by the great Master Workman.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 484, April 11, 1885 from Project Gutenberg. Public domain.