An Introductory Course of Quantitative Chemical Analysis eBook

This eBook from the Gutenberg Project consists of approximately 220 pages of information about An Introductory Course of Quantitative Chemical Analysis.

An Introductory Course of Quantitative Chemical Analysis eBook

This eBook from the Gutenberg Project consists of approximately 220 pages of information about An Introductory Course of Quantitative Chemical Analysis.
| | | | 0.1 | .013 | .0013 | .0987 | .0000171 | | | | 0.01 | .0407 | .000407 | .009593 | .0000172 | | | | ============================================================
===============

[Footnote 1:  Alexander Smith, !General Inorganic Chemistry!, p. 579.]

The molal concentrations given in the table refer to fractions of a gram-molecule per liter of the undissociated acid, and to fractions of the corresponding quantities of H^{+} and C_{2}H_{3}O_{2}^{-} ions per liter which would result from the complete dissociation of a gram-molecule of acetic acid.  The values calculated for the constant are subject to some variation on account of experimental errors in determining the percentage ionized in each case, but the approximate agreement between the values found for molal and centimolal (one hundredfold dilution) is significant.

The figures given also illustrate the general principle, that the !relative! ionization of an electrolyte increases with the dilution of its solution.  If we consider what happens during the (usually) brief period of dilution of the solution from molal to 0.1 molal, for example, it will be seen that on the addition of water the conditions of concentration which led to equality in the rate of change, and hence to equilibrium in the molal solution, cease to exist; and since the dissociating tendency increases with dilution, as just stated, it is true at the first instant after the addition of water that the concentration of the undissociated acid is too great to be permanent under the new conditions of dilution, and the reaction, HC_{2}H_{3}O_{2} <—­> H^{+} + C_{2}H_{3}O_{2}^{-}, will proceed from left to right with great rapidity until the respective concentrations adjust themselves to the new conditions.

That which is true of this reaction is also true of all reversible reactions, namely, that any change of conditions which occasions an increase or a decrease in concentration of one or more of the components causes the reaction to proceed in one direction or the other until a new state of equilibrium is established.  This principle is constantly applied throughout the discussion of the applications of the ionic theory in analytical chemistry, and it should be clearly understood that whenever an existing state of equilibrium is disturbed as a result of changes of dilution or temperature, or as a consequence of chemical changes which bring into action any of the constituents of the solution, thus altering their concentrations, there is always a tendency to re-establish this equilibrium in accordance with the law.  Thus, if a base is added to the solution of acetic acid the H^{+} ions then unite with the Oh^{-} ions from the base to form undissociated water.  The concentration of the H^{+} ions is thus diminished, and more of the acid dissociates in an attempt to restore equilbrium, until finally practically all the acid is dissociated and neutralized.

Copyrights
Project Gutenberg
An Introductory Course of Quantitative Chemical Analysis from Project Gutenberg. Public domain.