Scientific American Supplement, No. 446, July 19, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 133 pages of information about Scientific American Supplement, No. 446, July 19, 1884.

Scientific American Supplement, No. 446, July 19, 1884 eBook

This eBook from the Gutenberg Project consists of approximately 133 pages of information about Scientific American Supplement, No. 446, July 19, 1884.

The circuit of the opposing battery was permanently completed, independently of the transmitting apparatus, through both branch conductors and artificial resistances.

The auxiliary battery at the receiving station normally maintained upon the main line a continuous electric current of a negative polarity, which did not produce a mark upon the chemical paper.

When the transmitting battery was applied thereto, the excessive electro-motive force of the latter overpowered the current from the auxiliary battery and exerted, by means of a positive current, an electro-chemical action upon the chemical receiving paper, producing a mark.

Immediately upon the interruption of the circuit of the transmitting battery, the unopposed current from the auxiliary battery at the receiving station flowed back through the paper and into the main line, thereby both neutralizing the residual or inductive current, which tended to flow through the receiving instrument, and serving to clear the main line from electro-static charge.

The following diagram illustrates my method: 

Referring to this diagram, A and B respectively represent a transmitting and a receiving station of an automatic telegraph.  These stations are united in the usual manner by a main line, L. At the transmitting station, A, is placed a transmitting battery, E, having its positive pole connected by a conductor, 2, with the metallic transmitting drum, T. The negative pole of the battery, E, is connected with the earth at G by a conductor, 1.  A metallic transmitting stylus, t, rests upon the surface of the drum, T, and any well known or suitable mechanism may be employed for causing an automatic transmitting pattern slip, P, to pass between the stylus and the drum.  The transmitting or pattern slip, P, is perforated with groups of apertures of varying lengths and intervals as required to represent the dispatch which it is desired to transmit, by an arbitrary system of signs, such, for example, as the Morse telegraphic code.

At the receiving station, B, is placed a recording apparatus, M, of any suitable or well known construction.  A strip of chemically prepared paper, N, is caused to pass rapidly and uniformly between the drum, M’, and the stylus, m, of this instrument in a well known manner.  The drum, M’, is connected with the earth by conductors, 4 and 3, between which is placed the auxiliary battery, E, the positive or marking pole of this battery being connected with the drum and the negative pole with the earth.  The electro-motive force of the battery, E’, is preferably made about one-third as great as that of the battery, E.

[Illustration]

Copyrights
Project Gutenberg
Scientific American Supplement, No. 446, July 19, 1884 from Project Gutenberg. Public domain.