Methane (Ch4) Encyclopedia Article

Methane (Ch4)

The following sections of this BookRags Literature Study Guide is offprint from Gale's For Students Series: Presenting Analysis, Context, and Criticism on Commonly Studied Works: Introduction, Author Biography, Plot Summary, Characters, Themes, Style, Historical Context, Critical Overview, Criticism and Critical Essays, Media Adaptations, Topics for Further Study, Compare & Contrast, What Do I Read Next?, For Further Study, and Sources.

(c)1998-2002; (c)2002 by Gale. Gale is an imprint of The Gale Group, Inc., a division of Thomson Learning, Inc. Gale and Design and Thomson Learning are trademarks used herein under license.

The following sections, if they exist, are offprint from Beacham's Encyclopedia of Popular Fiction: "Social Concerns", "Thematic Overview", "Techniques", "Literary Precedents", "Key Questions", "Related Titles", "Adaptations", "Related Web Sites". (c)1994-2005, by Walton Beacham.

The following sections, if they exist, are offprint from Beacham's Guide to Literature for Young Adults: "About the Author", "Overview", "Setting", "Literary Qualities", "Social Sensitivity", "Topics for Discussion", "Ideas for Reports and Papers". (c)1994-2005, by Walton Beacham.

All other sections in this Literature Study Guide are owned and copyrighted by BookRags, Inc.

Methane (Ch4)

Methane is an invisible, odorless, and combustible gas present in trace concentrations in the atmosphere. It is the major component of natural gas, a fossil fuel commonly used for heating and cooking. The molecule consists of one carbon atom bonded to four hydrogen atoms (CH4), making it the simplest member of a chemical family known as hydrocarbons. Other hydrocarbons include ethane (C2H6), propane (C3H8), and butane (C4H10).

Chemical structure of methane (CH4). Chemical structure of methane (CH4).

As a greenhouse gas, methane ranks second to carbon dioxide. Methane levels, based on ice core samples, have more than doubled since 1750 (from 0.7 to 1.7 parts per million), largely due to human activity. On a molecule-for-molecule basis, methane is twenty-three times more potent as a greenhouse gas than carbon dioxide. Both gases are targeted for emissions reduction in the Kyoto Protocol.

Methane enters the atmosphere from both natural (30 percent) and anthropogenic (70 percent) sources. Methanogens (methane-producing bacteria in swamps and wetlands) are the largest natural source.

Anthropogenic sources of methane include leaks during fossil fuel mining, rice agriculture, raising livestock (cattle and sheep), and municipal landfills. Methanogens thrive in the oxygen-free (anaerobic) environment of landfills, releasing the gas in significant quantities. The gas is purposefully ignited to prevent explosion or captured for its commercial value as a fuel.

Livestock such as sheep, goats, camel, cattle, and buffalo currently account for 15 percent of the annual anthropogenic methane emissions. These grass-eating animals have a unique, four-chambered stomach. In the chamber called the rumen, bacteria break down food and generate methane as a by-product. Better grazing management and dietary supplementation have been identified as the most effective ways to reduce livestock methane emissions because they improve animal nutrition and reproductive efficiency. This general approach has been demonstrated by the U.S. dairy industry over the past several decades as milk production increased and methane emissions decreased.

Bibliography

DeLong, Eward F. (2000). "Resolving a Methane Mystery." Nature 407:577–579.

Simpson, Sarah. (2000). "Methane Fever." Scientific American 282(2):24–27.

Turco, Richard P. (1997). Earth under Siege: From Air Pollution to Global Change. New York: Oxford University Press.


Internet Resource

Intergovernmental Panel on Climate Change, Working Group I. "Atmospheric Chemistry and Greenhouse Gases." Climate Change 2001: The Scientific Basis. Available from http://www.ipcc.ch.