Scientific American Supplement, No. 388, June 9, 1883 eBook

This eBook from the Gutenberg Project consists of approximately 147 pages of information about Scientific American Supplement, No. 388, June 9, 1883.

Scientific American Supplement, No. 388, June 9, 1883 eBook

This eBook from the Gutenberg Project consists of approximately 147 pages of information about Scientific American Supplement, No. 388, June 9, 1883.

I have made a series of experiments with regard to finding a reliable method of estimating the acetic acid in commercial acetate of lime, and find the following gives the best results:  The sample is finely ground and about 6 grms. weighed into a half-liter flask, dissolved in water, and diluted to the containing mark. 100 c.c. of this solution are distilled with 70 grms. of strong phosphoric acid nearly to dryness, and 50 c.c. of water are added to the residue in the retort and distilled till the distillate gives no precipitate with nitrate of silver, titrate the distillates with standard caustic soda, evaporate to dryness in a platinum dish, and ignite the residue before the blow pipe, which converts the phosphate of soda (formed by a little phosphoric acid carried over in the distillation) into the insoluble pyrophosphate and the acetate of soda into NaHO; dissolve in water, and titrate with standard H_{2}SO_{4}, which gives the amount of soda combined with the acetic acid in the original sample.  In a number of samples analyzed they were found to vary hardly anything.—­C.  H. Slaytor, in Chem.  News.

* * * * *

THE REMOVAL OF AMMONIA FROM CRUDE GAS.

In connection with the many plans now brought forward to utilize the ammonia in the gases escaping from coke ovens and blast furnaces, it may be of interest to refer to a process brought out some years ago in connection with illuminating gas manufacture by Messrs. Bolton & Wanklyn, and adapted by them, we understand, to the metallurgical branches also.

When bone ash or any other substance containing phosphate of lime is treated with sulphuric acid, the products formed are superphosphate of lime and hydrated sulphate of lime; this mixture is known as superphosphate of lime, in commerce, and is the substance used in this process.  This substance is capable of absorbing carbonic acid and ammonia from foul gas.  The complete action can only take place in the presence of a certain proportion of carbonic acid, so that the process is not so successful with “well-scrubbed illuminating gas.”  The superphosphate is converted into carbonate of lime, while the ammonia combines with the phosphoric acid to form phosphate of ammonia; the hydrated sulphate of lime is also acted upon, and forms carbonate of lime and sulphate of ammonia; so that, presuming the action to be complete, and the material to be thoroughly saturated with carbonic acid and ammonia from the foul gas, the result is a mixture of carbonate of lime and phosphate and sulphate of ammonia.

Under these circumstances, the mixture absorbs one equivalent of carbonic acid for every four equivalents of ammonia; therefore, if the superphosphate process be substituted for the ordinary washers and scrubbers, a large proportion of the carbonic acid and also the whole of the sulphureted hydrogen is left in the gas, and must be dealt with in other ways.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 388, June 9, 1883 from Project Gutenberg. Public domain.