The New Physics and Its Evolution eBook

This eBook from the Gutenberg Project consists of approximately 267 pages of information about The New Physics and Its Evolution.

The New Physics and Its Evolution eBook

This eBook from the Gutenberg Project consists of approximately 267 pages of information about The New Physics and Its Evolution.
It is thus found that, in the case of visible light, the number of the vibrations from the end of the violet to the infra-red varies from four hundred to two hundred billions per second.  This gamut is not, however, the only one the ether can give.  For a long time we have known ultra-violet radiations still more rapid, and, on the other hand, infra-red ones more slow, while in the last few years the field of known radiations has been singularly extended in both directions.

It is to M. Rubens and his fellow-workers that are due the most brilliant conquests in the matter of great wave-lengths.  He had remarked that, in their study, the difficulty of research proceeds from the fact that the extreme waves of the infra-red spectrum only contain a small part of the total energy emitted by an incandescent body; so that if, for the purpose of study, they are further dispersed by a prism or a grating, the intensity at any one point becomes so slight as to be no longer observable.  His original idea was to obtain, without prism or grating, a homogeneous pencil of great wave-length sufficiently intense to be examined.  For this purpose the radiant source used was a strip of platinum covered with fluorine or powdered quartz, which emits numerous radiations close to two bands of linear absorption in the absorption spectra of fluorine and quartz, one of which is situated in the infra-red.  The radiations thus emitted are several times reflected on fluorine or on quartz, as the case may be; and as, in proximity to the bands, the absorption is of the order of that of metallic bodies for luminous rays, we no longer meet in the pencil several times reflected or in the rays remaining after this kind of filtration, with any but radiations of great wave-length.  Thus, for instance, in the case of the quartz, in the neighbourhood of a radiation corresponding to a wave-length of 8.5 microns, the absorption is thirty times greater in the region of the band than in the neighbouring region, and consequently, after three reflexions, while the corresponding radiations will not have been weakened, the neighbouring waves will be so, on the contrary, in the proportion of 1 to 27,000.

With mirrors of rock salt and of sylvine[21] there have been obtained, by taking an incandescent gas light (Auer) as source, radiations extending as far as 70 microns; and these last are the greatest wave-lengths observed in optical phenomena.  These radiations are largely absorbed by the vapour of water, and it is no doubt owing to this absorption that they are not found in the solar spectrum.  On the other hand, they easily pass through gutta-percha, india-rubber, and insulating substances in general.

[Footnote 21:  A natural chlorate of potassium, generally of volcanic origin.—­ED.]

At the opposite end of the spectrum the knowledge of the ultra-violet regions has been greatly extended by the researches of Lenard.  These extremely rapid radiations have been shown by that eminent physicist to occur in the light of the electric sparks which flash between two metal points, and which are produced by a large induction coil with condenser and a Wehnelt break.  Professor Schumann has succeeded in photographing them by depositing bromide of silver directly on glass plates without fixing it with gelatine; and he has, by the same process, photographed in the spectrum of hydrogen a ray with a wave-length of only 0.1 micron.

Copyrights
Project Gutenberg
The New Physics and Its Evolution from Project Gutenberg. Public domain.