Forgot your password?  

Resources for students & teachers

This eBook from the Gutenberg Project consists of approximately 188 pages of information about An Introductory Course of Quantitative Chemical Analysis.

Since normal solutions of various reagents are all referred to a common standard, they have an advantage not possessed by empirical solutions, namely, that they are exactly equivalent to each other.  Thus, a liter of a normal solution of an acid will exactly neutralize a liter of a normal alkali solution, and a liter of a normal oxidizing solution will exactly react with a liter of a normal reducing solution, and so on.

Beside the advantage of uniformity, the use of normal solutions simplifies the calculations of the results of analyses.  This is particularly true if, in connection with the normal solution, the weight of substance for analysis is chosen with reference to the atomic or molecular weight of the constituent to be determined. (See problem 26.)

The preparation of an !exactly! normal, half-normal, or tenth-normal solution requires considerable time and care.  It is usually carried out only when a large number of analyses are to be made, or when the analyst has some other specific purpose in view.  It is, however, a comparatively easy matter to prepare standard solutions which differ but slightly from the normal or half-normal solution, and these have the advantage of practical equality; that is, two approximately half-normal solutions are more convenient to work with than two which are widely different in strength.  It is, however, true that some of the advantage which pertains to the use of normal solutions as regards simplicity of calculations is lost when using these approximate solutions.

The application of these general statements will be made clear in connection with the use of normal solutions in the various types of volumetric processes which follow.

I. NEUTRALIZATION METHODS

ALKALIMETRY AND ACIDIMETRY

GENERAL DISCUSSION

!Standard Acid Solutions! may be prepared from either hydrochloric, sulphuric, or oxalic acid.  Hydrochloric acid has the advantage of forming soluble compounds with the alkaline earths, but its solutions cannot be boiled without danger of loss of strength; sulphuric acid solutions may be boiled without loss, but the acid forms insoluble sulphates with three of the alkaline earths; oxalic acid can be accurately weighed for the preparation of solutions, and its solutions may be boiled without loss, but it forms insoluble oxalates with three of the alkaline earths and cannot be used with certain of the indicators.

!Standard Alkali Solutions! may be prepared from sodium or potassium hydroxide, sodium carbonate, barium hydroxide, or ammonia.  Of sodium and potassium hydroxide, it may be said that they can be used with all indicators, and their solutions may be boiled, but they absorb carbon dioxide readily and attack the glass of bottles, thereby losing strength; sodium carbonate may be weighed directly if its purity is assured, but the presence

Follow Us on Facebook