Scientific American Supplement, No. 799, April 25, 1891 eBook

This eBook from the Gutenberg Project consists of approximately 110 pages of information about Scientific American Supplement, No. 799, April 25, 1891.

Scientific American Supplement, No. 799, April 25, 1891 eBook

This eBook from the Gutenberg Project consists of approximately 110 pages of information about Scientific American Supplement, No. 799, April 25, 1891.

It only remains to be said that the risks run in steaming around to Halifax by herself were, as it was, very great, and had the wind and sea been less favorable, the undertaking would probably have proved a disastrous failure.

* * * * *

THE THERMIC MOTOR OF THE FUTURE?

Up to recent years there was no reason for putting the question that forms the title of this article, for it was admitted by all that the conversion of thermic energy, or heat produced by the combustion of coal, into mechanical energy or work could no longer be effected economically except by having recourse to steam.  In ordinary language, and even to manufacturers, steam engine was the equivalent of thermic motor, and it would not have occurred to any one to use anything else but steam to effect the transformation.

The progress that has been made during the last twenty years in the thermatic study and construction of gas motors (without speaking of hot air motors) has shown that the use of steam is not absolutely indispensable for the production of work, and it has demonstrated that, as regards dynamic product, the gas motor preserves the advantage, although the relatively high price of the illuminating gas employed in the production of the motive power generally renders the use of this combustible more costly than steam, especially for high powers.

The economic truth of twenty years ago, when gas motors absorbed 1,500 liters per horse hour and exceeded with difficulty an effective power of from 8 to 10 horses, has become less and less certain, when the consumption has successively descended to 1,200, 1,000, 800 and even to 600 liters of gas per horse hour, the power of the motors rising gradually to 25, 50 and 100 horses with a motor having a single cylinder of a diameter of 57 centimeters.

[Illustration:  Fig. 1.—­Corliss engine and boiler of 100 indicated H.P.—­Elevation and plan.

A, cylinder; B, condenser; C, boiler; R, feed water heater; D, chimney.]

But these results did not suffice, and it was desired to do better still by dispensing with the use of high priced illuminating gas.  An endeavor was made to obviate the difficulty by manufacturing a special gas for the motive power, as steam is produced for the same object, by distilling coal, carbureting air, producing water gas by the Dowson process, and by other equivalent processes.

The strides made in this direction were finally crowned with success, and the results obtained in the recent experiments due to Mr. Aime Witz, an undoubted authority in the matter, permit of affirming that now and hereafter, in many circumstances, a gas generator supplying a gas motor will be able to advantageously dethrone a steam boiler supplying a steam engine of the same power.

Copyrights
Project Gutenberg
Scientific American Supplement, No. 799, April 25, 1891 from Project Gutenberg. Public domain.